Introduction to SHAKTI SDK

SHAKTI Group | CSE Dept | PS-CDISHA - RISE Lab | IIT Madras

Shakti SDK Features

e Open-source software development platform for SHAKTI.

e C(lean separation between boot, drivers, core and application
layers.

e Driver support for PWM, QSPI, SPI, PLIC, CLINT, UART, I2C,
GPIO, RTC, Watchdog, GPTimer and XADC.

e Drivers written for multiple sensors and tested.

e Standalone and Debug mode supported.

Shakti SDK Features

e Multilevel logging & Flash programming supported.
e Single place for bare-metal application development, projects
and benchmarks.
e SDK extendable for any FPGA board.
e Visual Studio Code IDE
o Using Platform 10 Extension
e Arduino IDE support.
e [ESP8266 & ESP 32, FTDI, External Flashes and many sensors

integrated.

Shakti SDK Architecture

SHAKTI-SDK
DOCS BSP — SOFTWARE
DRIVER
INCLUDE EXAMPLES
LIBS
UTILS BENCHMARK
CORE
BOARDS PROJECTS

https:/gitlab.com/shaktiproject/software/shakti-sdk

https://gitlab.com/shaktiproject/software/shakti-sdk
https://gitlab.com/shaktiproject/software/shakti-sdk

Understanding structure of SHAKTI SDK

Main files to know (Core)

C init.c
3] start.S
| trap.S

C traps.c

Trap Handling initialisations & Peri. Initialisation & calling the main function.
Register initialisation, Section initialisation like (stack, text, global, data, etc.)
Pushing the register values into Stack, Call ISR, Pop the register values.

Find the cause for the trap and jump to the Handler

Main files to know (drivers)

B3 clint
£ ethernet
Bai2c

B3 plic e Drivers for all the peripherals.

e Generic But Board specific.
B3 pwm

B3 spi
B3 sspi
B3 uart

B3 xade

<SHAKTI

Main files to know (include)

h clint_driver.h

h defines.h

h eth_driver.h

h gpio.h

h gpio_i2c.h

h gpio_spi.h

h i2c.h

h log.h

h memory.h

h pinmux.h

h plic_driver.h

h pwm_driver.h

h gspi.h

h spi.h

h traps.h

h uart.h

h utils.h

h xadc_driver.h

Header files for all the peripheral drivers.
Generic But Board specific.

<SHAKTI

Main files to know (lib)

¢ log.c e Printlibrary

e Multilevel log control

e Few more function implementations for
delay & string operations.

C printf.c

C util.c

<SHAKTI

Main files to know (third party)

B3 moushik
B parashu
B3 pinaka

B vajra

Board specific address mapping (platform.h).
Configuration files to be used for debugging
(xxxx.cfg).

Linker for various sections of the code.

<SHAKTI

Main files to know (utils/uploader)

3 spansion
& burnFlash.py

C elf_to_header.c

Board SPI or External SPI can be used for
booting of the application.

Has the required python scripts required to
flash the application code.

EIf is converted to hex file.

Hex file is added in the uploader c coder.
The uploader code reads the header file and
writes into flash memory.

Main files to know (software)

B3 examples Example driver codes for peripherals.

B3 projects Application Project with many drivers.

<SHAKTI

Main files to know (examples)

B3 clint_applns
3 eth_test

B3 gpio_applns
Eai2c_applns
3 malloc_test
B3 plic_applns
B3 pwm_applns
B3 spi_applns
B3 uart_applns

B xadc_applns

Peripheral specific example codes.

e Around 45 - 50 example codes.

Beginning point for all program developers.

<SHAKTI

Main files to know (examples/i2c)

£ at24c256
B3 bmp280
E3ds3231
B3 lm75

B3 mpub050
B3 pcf8574

P pcf8591

12C specific example codes.

Different sensors being written helps easy
understanding of the driver codes and new
sensor additions.

<SHAKTI

Main files to know (projects)

B3 intruder_detection
e |Integrated application codes with more than

B irrigationsystem .
one peripheral.

B lora
B9 vart-cam
£ weatherstation

£ weatherstation_bmp280

<SHAKTI

Add new peripheral to Shakti SDK

Adding a new peripheral Details (platform.h)

e Add new peripherals base address.
e Peripheral offset.
e Peripheral count.

Adding a new peripheral Register details (drivers/xxxx.h)

typedef struct
{
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} vart_struct;

short baud;
short reserv0;
int tx_reg;
int rcv_reg;
char status;
char reservl;
short reserv2;
short delay;
short reservsy;
short control;
short reservs;
char ien;

char reservé;
short reserv7;
char iqcycles;
char reserv8;
short reserv9;

char rx_threshold;

char reservi0;
short reservll;

Add new peripherals registers as structures.

Be careful in adding variable length registers.
All registers are uniformly placed with 32 bit

offset.

Adding a peripheral address init(drivers/xxxx/xxxx.c)

void vart_init()
{

for(int

{

}

e |Initialises the base address for a particular
set of peripheral.

e Peripheral instance with array index can be
used to point to the registers of the

o | peripheral.
1=0; 1< MAX_UART_COUNT: 1++)

vart_instance[i] = (vart_structx) (UARTO_START+ixUART_OFFSET):

Adding a peripheral functions (drivers/xxxx/xxxx.c)

vint32_t write_vart_character(vart_struct * instance, vint8_t prn_character)

{
while(instance->status & STS_TX_FULL);
instance->tx_reg = prn_character;
return 0;

}

e Takes the peripheral instance as argument.
e Function is peripheral register access specific.

Include header files (examples/xxxx_applns/xxxx.c)

Lude <string.h>

Llude "vart.h"

Lude "pinmux.h"

lude "i2c.h"
ide u*Log.hn

e Include the required header files and macros.

<SHAKTI

Call the function in example application code

void write_to_lora(char *data)

{
while (*data != '\0')
{
write_vart_character(LORA_UART, *data);
data++;
F
write_enter_to_lora();
I

e Pass the required details and call the function.

Adding new appli. code (software/examples/Makefile)

ifeq ($(PROGRAM),poll_eq)
filepath := eth_test/poll_eg
else

ifeq ($(PROGRAM),ping_req)
filepath := eth_test/ping_reqg
else

ifeq ($(PROGRAM),ping_res)
filepath := eth_test/ping_res

else

ifeq ($(PROGRAM),lora_receive)
filepath := vart_applns/lora_receive
else

ifeq ($(PROGRAM),lora_transmit)
filepath := vart_applns/lora_transmit

Folder name and application file name should be

Ssame.

Mention the file path for the code to be compiled.

Compile the code

make software PROGRAM=hello TARGET=vajra

e Make sure the terminal is configured with the
required RISC-V tool chain path.

e Else add the path to the environment using export
command or alias if exist in .bashrc.

® Run the make command with required target core &
program name.

Compile the code

alias rv64imafdc="'
alias rv32imac=
alias rv32imafc=

Successful compilation

make[2]: Leaving directory '/home/shakti/Documents/shakti-sdk/software/
examples'

cd uart applns/hello && make hello.riscv TARGET=vajra DEBUG=

make[2]: Entering directory '/home/shakti/Documents/shakti-sdk/software/
examples/uart applns/hello’
/toolchain/riscv/bin/../lib/gcc/riscv64-unknown-elf/12.2.0/../../../../
riscvé4-unknown-elf/bin/ld: warning: ./output/hello.shakti has a LOAD
segment with RWX permissions

make[2]: Leaving directory '/home/shakti/Documents/shakti-sdk/software/
examples/uart applns/hello’

All done !

make[1l]: Leaving directory '/home/shakti/Documents/shakti-sdk/software/

examples'

Follow the steps given in SHAKTI SDK user manual.

e Run Openocd (sudo openocd -f xxx.cfg) in first terminal.
e Run miniterm (pyserial-miniterm /dev/ttyUSBx 19200) second
terminal.
e Run risc-v gdb window (riscv64-unknown-elf-gdb) in third terminal.
e Run the following in the gdb window.
o Connect gdb with openocd ($ source gdb.script).
o Select the file ($ <file path>)
o Load the file ($ load)
o Runthefile($c)

e See the output prints in miniterm window.

References

Shakti Documentation: https:/shakti.org.in/documentation.html
Shakti Blogs: https:/blogshakti.org.in/

Shakti FPGA files: https:/gitlab.com/shaktiproject/sp2020
Shakti SDK: https:/gitlab.com/shaktiproject/software/shakti-sdk

Shakti on Arduino: https:/blogshakti.org.in/how-to-print-hello-world-on-shakti-using-arduino-ide/

Linux on Shakti: https:/gitlab.com/shaktiproject/software/linux-on-shakti

Platform 10: https:/registry.platformio.org/platforms/platformio/shakti

Shakti cores: https:/gitlab.com/shaktiproject/cores

Shakti peripherals: https:/gitlab.com/shaktiproject/uncore/devices

28

https://shakti.org.in/documentation.html
https://blogshakti.org.in/
https://gitlab.com/shaktiproject/sp2020
https://gitlab.com/shaktiproject/software/shakti-sdk
https://blogshakti.org.in/how-to-print-hello-world-on-shakti-using-arduino-ide/
https://gitlab.com/shaktiproject/software/linux-on-shakti
https://registry.platformio.org/platforms/platformio/shakti
https://gitlab.com/shaktiproject/cores
https://gitlab.com/shaktiproject/uncore/devices

Thank you

