
Introduction to SHAKTI SDK
SHAKTI Group | CSE Dept | PS-CDISHA - RISE Lab | IIT Madras

Shakti SDK Features

2

● Open-source software development platform for SHAKTI.
● Clean separation between boot, drivers, core and application

layers.
● Driver support for PWM, QSPI, SPI, PLIC, CLINT, UART, I2C,

GPIO, RTC, Watchdog, GPTimer and XADC.
● Drivers written for multiple sensors and tested.
● Standalone and Debug mode supported.

Shakti SDK Features

3

● Multilevel logging & Flash programming supported.
● Single place for bare-metal application development, projects

and benchmarks.
● SDK extendable for any FPGA board.
● Visual Studio Code IDE

○ Using Platform IO Extension
● Arduino IDE support.
● ESP8266 & ESP 32, FTDI, External Flashes and many sensors

integrated.

Shakti SDK Architecture

4
https://gitlab.com/shaktiproject/software/shakti-sdk

https://gitlab.com/shaktiproject/software/shakti-sdk
https://gitlab.com/shaktiproject/software/shakti-sdk

Understanding structure of SHAKTI SDK

Main files to know (Core)

Trap Handling initialisations & Peri. Initialisation & calling the main function.

Register initialisation, Section initialisation like (stack, text, global, data, etc.)

Pushing the register values into Stack, Call ISR, Pop the register values.

Find the cause for the trap and jump to the Handler

Main files to know (drivers)

● Drivers for all the peripherals.
● Generic But Board specific.

Main files to know (include)

● Header files for all the peripheral drivers.
● Generic But Board specific.

Main files to know (lib)

 ● Print library
● Multilevel log control
● Few more function implementations for

delay & string operations.

Main files to know (third party)

 ● Board specific address mapping (platform.h).
● Configuration files to be used for debugging

(xxxx.cfg).
● Linker for various sections of the code.

Main files to know (utils/uploader)

● Board SPI or External SPI can be used for

booting of the application.
● Has the required python scripts required to

flash the application code.
● Elf is converted to hex file.
● Hex file is added in the uploader c coder.
● The uploader code reads the header file and

writes into flash memory.

Main files to know (software)

Example driver codes for peripherals.

Application Project with many drivers.

Main files to know (examples)

 ● Peripheral specific example codes.
● Around 45 - 50 example codes.
● Beginning point for all program developers.

Main files to know (examples/i2c)

 ● I2C specific example codes.
● Different sensors being written helps easy

understanding of the driver codes and new
sensor additions.

Main files to know (projects)

 ● Integrated application codes with more than
one peripheral.

Add new peripheral to Shakti SDK

Adding a new peripheral Details (platform.h)

● Add new peripherals base address.
● Peripheral offset.
● Peripheral count.

Adding a new peripheral Register details (drivers/xxxx.h)

● Add new peripherals registers as structures.
● Be careful in adding variable length registers.
● All registers are uniformly placed with 32 bit

offset.

Adding a peripheral address init(drivers/xxxx/xxxx.c)

● Initialises the base address for a particular

set of peripheral.
● Peripheral instance with array index can be

used to point to the registers of the
peripheral.

Adding a peripheral functions (drivers/xxxx/xxxx.c)

● Takes the peripheral instance as argument.
● Function is peripheral register access specific.

Include header files (examples/xxxx_applns/xxxx.c)

● Include the required header files and macros.

Call the function in example application code
(drivers/xxxx/xxxx.c)

● Pass the required details and call the function.

Adding new appli. code (software/examples/Makefile)

● Folder name and application file name should be
same.

● Mention the file path for the code to be compiled.

Compile the code

● Make sure the terminal is configured with the
required RISC-V tool chain path.

● Else add the path to the environment using export
command or alias if exist in .bashrc.

● Run the make command with required target core &
program name.

Compile the code

Successful compilation

Run the code

 Follow the steps given in SHAKTI SDK user manual.

● Run Openocd (sudo openocd -f xxx.cfg) in first terminal.
● Run miniterm (pyserial-miniterm /dev/ttyUSBx 19200) second

terminal.
● Run risc-v gdb window (riscv64-unknown-elf-gdb) in third terminal.
● Run the following in the gdb window.

○ Connect gdb with openocd ($ source gdb.script).
○ Select the file ($ <file path>)
○ Load the file ($ load)
○ Run the file ($ c)

● See the output prints in miniterm window.

References

Shakti Documentation: https://shakti.org.in/documentation.html

Shakti Blogs: https://blogshakti.org.in/

Shakti FPGA files: https://gitlab.com/shaktiproject/sp2020

Shakti SDK: https://gitlab.com/shaktiproject/software/shakti-sdk

Shakti on Arduino: https://blogshakti.org.in/how-to-print-hello-world-on-shakti-using-arduino-ide/

Linux on Shakti: https://gitlab.com/shaktiproject/software/linux-on-shakti

Platform IO: https://registry.platformio.org/platforms/platformio/shakti

Shakti cores: https://gitlab.com/shaktiproject/cores

Shakti peripherals: https://gitlab.com/shaktiproject/uncore/devices

28

https://shakti.org.in/documentation.html
https://blogshakti.org.in/
https://gitlab.com/shaktiproject/sp2020
https://gitlab.com/shaktiproject/software/shakti-sdk
https://blogshakti.org.in/how-to-print-hello-world-on-shakti-using-arduino-ide/
https://gitlab.com/shaktiproject/software/linux-on-shakti
https://registry.platformio.org/platforms/platformio/shakti
https://gitlab.com/shaktiproject/cores
https://gitlab.com/shaktiproject/uncore/devices

Thank you

